Homework 2

1. **Predicting outcomes**

Consider the pmf
\[p = \frac{1}{1000} [7 \ 9 \ 10 \ 36 \ 41 \ 43 \ 55 \ 73 \ 71 \ 72 \ 72 \ 72 \ 73 \ 77] \]
on \(\Omega = \{1, \ldots, 18\} \). Let \(x \) be the identity random variable, i.e., \(x : \Omega \rightarrow \Omega \) defined by \(x(\omega) = \omega \).

(a) Compute the mean and covariance of \(x \).

(b) We would like to pick an estimate of \(x \). Find the estimate \(\hat{x}_{\text{abs}} \in \Omega \) that minimizes the cost function
\[
E| x - \hat{x} |
\]
Also find the minimum possible cost.

(c) Find the estimate \(\hat{x}_{\text{min-error}} \in \Omega \) that minimizes the probability of error
\[
\text{Prob}(x \neq \hat{x})
\]
Also find the minimum probability of error.

(d) Find the estimate \(\hat{x}_{\text{squared}} \in \Omega \) that minimizes the cost function
\[
E((x - \hat{x})^2)
\]
What is the minimum cost? Show that, if we relax the constraint that \(\hat{x} \) lie in \(\Omega \), the \(\hat{x} \) that minimizes this cost function is
\[
\hat{x} = \mathbb{E} x
\]
Is it true that \(\hat{x}_{\text{squared}} \) is the element of \(\Omega \) which is closest in 2-norm to \(\mathbb{E} x \)?

(e) Let’s simulate the random variable \(x \) (using your code from another question). Collect 10,000 samples from \(x \), and compute the error achieved by your estimates \(\hat{x}_{\text{min-error}}, \hat{x}_{\text{squared}} \) and \(\hat{x}_{\text{abs}} \) using the appropriate error measure. Also compute the mean square error achieved by using the mean as an estimate.

2. **Chernoff Bounds**

(a) The Chernoff bound is similar to the Markov and Chebyshev bounds, as follows. Suppose \(x : \Omega \rightarrow \mathbb{R} \) is a random variable, and let \(\lambda \) be any positive real number. Then for all \(\varepsilon > 0 \),
\[
\text{Prob}(x \geq \varepsilon) \leq e^{f(\lambda) - \lambda \varepsilon}
\]
where the function \(f \) is
\[
f(\lambda) = \log \mathbb{E}(e^{\lambda x})
\]
Prove this.

(b) Suppose we have \(n \) IID discrete random variables \(y_1, \ldots, y_n \). Each \(y_i \) is a Bernoulli random variable, that is it takes value either 0 or 1 with probability \(\frac{1}{2} \). Define the random variable \(x \) by
\[
x = \sum_{i=1}^{n} y_i
\]
What is the pmf of \(x \)?

(c) When \(x \) is as in part (b), what is \(f(\lambda) \)? Hint; use the fact that \(x \) is a sum of IID random variables.
(d) By choosing λ to minimize the right-hand side of equation (1), we can make the bound as tight as possible. Show that the optimal λ is

$$\lambda = \log \left(\frac{\varepsilon}{n - \varepsilon} \right)$$

and hence when $\varepsilon \geq \text{E}x$, the best bound possible is

$$\text{Prob}(x \geq \varepsilon) \leq \frac{1}{2^n} \left(\frac{n}{n - \varepsilon} \right)^n \left(\frac{\varepsilon}{n - \varepsilon} \right)^{-\varepsilon}$$

What is the bound when $\varepsilon = \text{E}x$?

(e) For $n = 10$, plot

$$\text{Prob}(x \geq \varepsilon)$$

against ε, and also plot the Chernoff bound.

We can also use the Chebyshev bound to give an upper bound on this probability, since if $\varepsilon \geq \text{E}x$ we have

$$\text{Prob}(x \geq \varepsilon) = \text{Prob}(x - \text{E}x \geq \varepsilon - \text{E}x)$$

$$\leq \text{Prob}(|x - \text{E}x| \geq \varepsilon - \text{E}x)$$

$$\leq \frac{\text{cov}(x)}{(\varepsilon - \text{E}x)^2}$$

Also plot the Chebyshev bound on your plot. Notice that the Chernoff bound is tighter than the Chebyshev bound.