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Conditioning

e Given a joint pdf p(z,y) on R?

3
e Measure y; we would like to find the
. 2
conditional pdf of x

1_

0_

Frequency Interpretation |
e Collect data (z,y) bS]

-3

e Discard those pairs with
Yy §Z [Qmeas» Ymeas + 5]
for small ¢ > 0

e Then the density of x will approximate
the conditional pdf
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Conditioning

We would like to define the conditional probability
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Prob(AN B)
Prob(A | B) =
rob(A | B) = =5 bB)
where
A= ’ ~ 3 B = x] — meas}
L] [zetmad} m={ ) |v=s
3r—
We cannot do this, since Prob(B) = 0. 2
Instead we look at S
of
T ‘
B. = { [ ] (TS [ymea57ymeas+5]} |
and take the limit as ¢ — 0 o SNl
Ll
-3
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Conditional pdf as a limit

Prob(A | B) = lim Prob(A | B;)

e—0
Ymeas+¢€
/ / (x,y) dx dy
c—0 YmeastE€
/ / plz,y) dz dy
Ymeas —0

ag
5/ P(, Ymeas) dz + terms of order % or higher

1

= lin% —
5% 5/ P(Z, Ymeas) Az + terms of order £* or higher

© 9]

[ i)

o PY(Ymeas)

where pY is the marginal pdf of y.
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Conditional pdf

We write this as

ag

(T, Ymeas) o
1 py<ymeas)

Prob (51j S [04, a2] ‘y — ymeas) = /

We define the conditional pdf p!¥ of = given y = Ymeas by

a2
Prob (I c [al, CLQ] ‘ Yy = ymeas) = / p|y($7 ymeas) dx
aj
Since this holds for all a1, as, we must have
ly . p(ilf, ymeas)
poT, Yy =
< meaS> py<ymeas>

Again, we can think of the denominator as simply normalizing the pdf.
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Conditional mean and covariance

The conditional mean of x given y is

E<x ’ y — ymeas) — /xp:U(:C, ymeas> dCC

This is a function of Y meass

The conditional covariance of x given vy is

cov(z|y = w) =B ((z ~ f(w))(z— fw))" |y = w)

Here f(w) = E(x |y = w). The conditional covariance is also a function of ¥meas
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Conditional notation

e conditional expectation defines a function; e.g.,

flw) =E(z|y =w)

defines a function f : R — R”

e We often take expectations of the form

E(f(y))
For the above f we have E(f(y)) = Ex

e [his is often written
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Conditional notation

e Another common notation

h(w) = cov(z |y = w)

e Again, you see
E tracecov(z |y)

which means E trace(h(y))
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Conditional pdf for a Gaussian

Suppose x ~ N(0,3), and

Suppose we measure x5 = 1. We would like to find the conditional pdf of z; given x5 = vy
e Is it Gaussian?
e What is the conditional mean E(xl | 29 = y) of x1 given x4

e What is the conditional covariance cov(xy | xo = y) of x1 given x57
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Conditional pdf for a Gaussian

The pdf of x is
1
p(x) = cpexp (—éxTle)

By the completion of squares formula

1 _ I 0] [(Bn—2ulyYa)™ 0| [1 -5k,
Yy Ny 1 0 Yoo | [0 T

Hence
v Y e = (z) — Lao) ' T Yz — Lao) + 22 25 20

where

T =>4 — 21222_21221 L = Z1222_21
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Conditional pdf for a Gaussian

The conditional pdf of x1 given x5 is therefore

|:UQ L C1 (_l L L TT—l . L _l Tz—l )
P \T,Y) = €Xp I Yy I Y Y Y
(@19) = s ep( ~5(m = L)' T w1~ Ly) = 54",
= e (—lyT22‘21y> exp <—1(5E1 — Ly)' T (21 — Ly))
P2 (y) 2 2

Hence p!*2(x1, y) is Gaussian

peann) = ealy)exp 501 — Lo)'T o~ L)

where ¢y(y) is such that /p'“(azl, y)dry =1
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Conditional pdf for a Gaussian

o If x ~ N(0,Y), then the conditional pdf of x| given xy = y is Gaussian

e [he conditional mean is

E(z1]zs =y) = L1250,y

It is a linear function of y

e [he conditional covariance is

COV(.CIZ‘l ’ o = y) = 211 — 21222_21221

It is not a function of y
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Conditional pdf for a Gaussian

e Here

corte) = | s 1|

e We have

L =038 T =1.36

e Hence

cov(zy|xy=2) =038

0.35

03¢
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Conditional pdf for a Gaussian

e Here ) = [2 0'8]

0.8 1

e The contours of the condi-
tional pdf pl*2(x1,x5) as a
function of x; and x, are
shown in blue.

e Both confidence ellipsoids
and conditional contours
correspond to confidence

levels of 0.1, 0.3,0.5,0.7,0.9

o The conditional .pdf —3 _é _é _i O 1 2 3
s constant on lines
xr1 = 21222_215132 +a
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Conditional confidence intervals

Compare with the marginal pdf confidence intervals

T T

j
|
WV /?? 11|

Notice that conditional confidence intervals are narrower, since T" = > — 21222_21221
hence T' < X1, i.e., measuring xo gives information about x;
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Independence

suppose T : {2 — sR" is a random variable with induced pdf p* : R” — R

each component z; is a random variable, with marginal pdf p** : R — R given by
integrating over all other components, e.g. in R?,

3(x3) / / x) dxidxs
T9=—00 xl——oo

random variables =1, ..., z, € R are called independent if

p*(z) = p™(z)p™(x2) ... p™ ()
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Adding independent random variables

x,y € R are independent random variables, with induced pdf’s p* and pY

let z = x + y; the induced pdf of z is the convolution of p* and pY

example: convolution of a uniform pdf with itself

if , 1y are both uniform on [0, 2], and independent, let z = x + y

0.5

0.4r

0.31

f ()
o
w

.2

0.21

0.1p

0 ‘ 0 ‘
0 1 2 3 4 0 2 4 6 8 10
X z

the distribution of the sum of two uniform rv's is not uniform.
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Uncorrelated Gaussians

Uncorrelated Gaussians are independent

Suppose z : 2 — R". If x ~ N (1,>) and X195 = 0, then x; and x5 are independent.

To see this, notice that

1
p(x1, 29) = exp(—§xTZ_1:c>

1 1
= C1 eXpP <—§ZC?2111$1> EXP (—537522211'2)
= p"(@1)p" (22)

where p™! and p™? are Gaussian pdfs.



9-19 Conditional density S. Lall, Stanford 2011.02.02.01
Example: correlation

Suppose = ~ N(0,Y) where

|
|
G e N
— N =
o — O

Then

e z and y are correlated
e 2 and y are correlated

e 2 and x are uncorrelated

e The eigenvalues of X are 0.59,2,3.4
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Example: correlation

The 90% confidence ellipsoid is

!
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Example: correlation

The 90% confidence ellipsoid is
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Example: correlation

The 90% confidence ellipsoid is
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Example: correlation

The 90% confidence ellipsoid is
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example: adding Gaussian random vectors

suppose x € R?, and z ~ N (1, 2); let

z = [1 1]:1:
= X1+ Ty

then
Ez =+ p

and

cov(z) =1 1] X H

211 0

|fZ:[O o

] is diagonal, so x1 and x5 are independent, then

cov(z) = Y11 + Yoo



