9 - 1 Conditional density

S. Lall, Stanford 2011.02.02.01

9 - Conditional density

- Conditional density
- Conditional pdf as a limit
- Conditional mean and covariance
- Conditional notation
- Conditional pdf for a Gaussian
- Conditional confidence intervals
- Independence
- Adding independent random variables
- Uncorrelated Gaussians
- Adding Gaussian random vectors

Conditioning

- Given a joint pdf p(x,y) on \mathbb{R}^2
- Measure y; we would like to find the conditional pdf of x

Frequency Interpretation

- Collect data (x, y)
- Discard those pairs with

$$y \notin [y_{\text{meas}}, y_{\text{meas}} + \varepsilon]$$

for small $\varepsilon > 0$

• Then the density of \boldsymbol{x} will approximate the conditional pdf

Conditioning

We would like to define the conditional probability

$$\mathbf{Prob}(A \mid B) = \frac{\mathbf{Prob}(A \cap B)}{\mathbf{Prob}(B)}$$

where

$$A = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| x \in [a_1, a_2] \right\} \qquad B = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| y = y_{\text{meas}} \right\}$$

We cannot do this, since $\mathbf{Prob}(B) = 0$.

Instead we look at

$$B_{\varepsilon} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid y \in [y_{\text{meas}}, y_{\text{meas}} + \varepsilon] \right\}$$

and take the limit as $\varepsilon \to 0$

9 - 4 Conditional density

S. Lall, Stanford 2011.02.02.01

Conditional pdf as a limit

$$\mathbf{Prob}(A \mid B) = \lim_{\varepsilon \to 0} \ \mathbf{Prob}(A \mid B_{\varepsilon})$$

$$= \lim_{\varepsilon \to 0} \ \frac{\int_{y_{\mathsf{meas}}}^{y_{\mathsf{meas}} + \varepsilon} \int_{a_1}^{a_2} p(x,y) \, dx \, dy}{\int_{y_{\mathsf{meas}}}^{y_{\mathsf{meas}} + \varepsilon} \int_{-\infty}^{\infty} p(x,y) \, dx \, dy}$$

$$= \lim_{\varepsilon \to 0} \ \frac{\varepsilon \int_{a_1}^{a_2} p(x,y_{\rm meas}) \, dx \ + \ {\rm terms \ of \ order} \ \varepsilon^2 \ {\rm or \ higher}}{\varepsilon \int_{-\infty}^{\infty} p(x,y_{\rm meas}) \, dx \ + \ {\rm terms \ of \ order} \ \varepsilon^2 \ {\rm or \ higher}}$$

$$= \int_{a_1}^{a_2} \frac{p(x,y_{\rm meas})}{p^y(y_{\rm meas})} \, dx$$

where p^y is the marginal pdf of y.

9 - 5 Conditional density S. Lall, Stanford 2011.02.02.01

Conditional pdf

We write this as

$$\mathbf{Prob}(x \in [a_1, a_2] | y = y_{\text{meas}}) = \int_{a_1}^{a_2} \frac{p(x, y_{\text{meas}})}{p^y(y_{\text{meas}})} dx$$

We define the conditional pdf $p^{|y|}$ of x given $y = y_{meas}$ by

$$\mathbf{Prob}(x \in [a_1, a_2] | y = y_{\text{meas}}) = \int_{a_1}^{a_2} p^{|y}(x, y_{\text{meas}}) dx$$

Since this holds for all a_1, a_2 , we must have

$$p^{|y}(x,y_{\rm meas}) = \frac{p(x,y_{\rm meas})}{p^y(y_{\rm meas})}$$

Again, we can think of the denominator as simply normalizing the pdf.

Conditional mean and covariance

The *conditional mean* of x given y is

$$\mathbf{E}(x \mid y = y_{\text{meas}}) = \int x \, p^{|y}(x, y_{\text{meas}}) \, dx$$

This is a function of y_{meas}

The *conditional covariance* of x given y is

$$\mathbf{cov}(x \mid y = w) = \mathbf{E}\Big(\big(x - f(w)\big)\big(x - f(w)\big)^T \mid y = w\Big)$$

Here $f(w) = \mathbf{E}(x \mid y = w)$. The conditional covariance is also a function of y_{meas}

Conditional notation

conditional expectation defines a function; e.g.,

$$f(w) = \mathbf{E}(x \mid y = w)$$

defines a function $f: \mathbb{R}^m \to \mathbb{R}^n$

We often take expectations of the form

$$\mathbf{E}(f(y))$$

For the above f we have $\mathbf{E}(f(y)) = \mathbf{E} x$

• This is often written

$$\mathbf{E}(\mathbf{E}(x \mid y))$$

Conditional notation

Another common notation

$$h(w) = \mathbf{cov}(x \mid y = w)$$

• Again, you see

$$\mathbf{E} \operatorname{trace} \mathbf{cov}(x \mid y)$$

which means $\mathbf{E} \operatorname{trace}(h(y))$

Suppose $x \sim \mathcal{N}(0, \Sigma)$, and

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

Suppose we measure $x_2 = y$. We would like to find the conditional pdf of x_1 given $x_2 = y$

- Is it Gaussian?
- What is the *conditional mean* $\mathbf{E}(x_1 | x_2 = y)$ of x_1 given x_2
- What is the *conditional covariance* $\mathbf{cov}(x_1 \mid x_2 = y)$ of x_1 given x_2 ?

The pdf of x is

$$p^{x}(x) = c_1 \exp\left(-\frac{1}{2}x^{T}\Sigma^{-1}x\right)$$

By the completion of squares formula

$$\Sigma^{-1} = \begin{bmatrix} I & 0 \\ -\Sigma_{22}^{-1}\Sigma_{21} & I \end{bmatrix} \begin{bmatrix} (\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})^{-1} & 0 \\ 0 & \Sigma_{22}^{-1} \end{bmatrix} \begin{bmatrix} I & -\Sigma_{12}\Sigma_{22}^{-1} \\ 0 & I \end{bmatrix}$$

Hence

$$x^{T} \Sigma^{-1} x = (x_1 - Lx_2)^{T} T^{-1} (x_1 - Lx_2) + x_2^{T} \Sigma_{22}^{-1} x_2$$

where

$$T = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \qquad L = \Sigma_{12} \Sigma_{22}^{-1}$$

9 - 11 Conditional density S. Lall, Stanford 2011.02.02.01

Conditional pdf for a Gaussian

The conditional pdf of x_1 given x_2 is therefore

$$p^{|x_2}(x_1, y) = \frac{c_1}{p^{x_2}(y)} \exp\left(-\frac{1}{2}(x_1 - Ly)^T T^{-1}(x_1 - Ly) - \frac{1}{2}y^T \Sigma_{22}^{-1}y\right)$$

$$= \frac{c_1}{p^{x_2}(y)} \exp\left(-\frac{1}{2}y^T \Sigma_{22}^{-1} y\right) \exp\left(-\frac{1}{2}(x_1 - Ly)^T T^{-1}(x_1 - Ly)\right)$$

Hence $p^{|x_2|}(x_1, y)$ is Gaussian

$$p^{|x_2}(x_1, y) = c_2(y) \exp\left(-\frac{1}{2}(x_1 - Ly)^T T^{-1}(x_1 - Ly)\right)$$

where $c_2(y)$ is such that $\int p^{|x_2|}(x_1,y) dx_1 = 1$

• If $x \sim \mathcal{N}(0, \Sigma)$, then the conditional pdf of x_1 given $x_2 = y$ is Gaussian

The conditional mean is

$$\mathbf{E}(x_1 \,|\, x_2 = y) = \Sigma_{12} \Sigma_{22}^{-1} y$$

It is a *linear function* of y

• The conditional covariance is

$$\mathbf{cov}(x_1 \mid x_2 = y) = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

It is *not* a function of y

Here

$$\mathbf{cov}(x) = \begin{bmatrix} 2 & 0.8 \\ 0.8 & 1 \end{bmatrix} \qquad p^{|x_2|}(x_1, 2)$$

• We have

$$L = 0.8$$
 $T = 1.36$

Hence

$$\mathbf{E}(x_1 \mid x_2 = 2) = 1.6$$

$$\mathbf{cov}(x_1 \mid x_2 = 2) = 0.8$$

- Here $\Sigma = \begin{bmatrix} 2 & 0.8 \\ 0.8 & 1 \end{bmatrix}$
- The contours of the *conditional pdf* $p^{|x_2|}(x_1, x_2)$ as a function of x_1 and x_2 are shown in blue.
- Both confidence ellipsoids and conditional contours correspond to confidence levels of 0.1, 0.3, 0.5, 0.7, 0.9
- The conditional pdf is constant on lines $x_1 = \sum_{12} \sum_{22}^{-1} x_2 + a$

Conditional confidence intervals

Compare with the marginal pdf confidence intervals

Notice that conditional confidence intervals are narrower, since $T = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$ hence $T \leq \Sigma_{11}$, i.e., measuring x_2 gives *information* about x_1

9 - 16 Conditional density S. Lall, Stanford 2011.02.02.01

Independence

suppose $x:\Omega\to s\mathbb{R}^n$ is a random variable with induced pdf $p^x:\mathbb{R}^n\to\mathbb{R}$

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

each component x_i is a random variable, with marginal pdf $p^{x_i}: \mathbb{R} \to \mathbb{R}$ given by integrating over all other components, e.g. in \mathbb{R}^3 ,

$$p^{x_3}(x_3) = \int_{x_2 = -\infty}^{\infty} \int_{x_1 = -\infty}^{\infty} p^x(x) \, dx_1 dx_2$$

random variables $x_1, \ldots, x_n \in \mathbb{R}$ are called *independent* if

$$p^{x}(x) = p^{x_1}(x_1)p^{x_2}(x_2)\dots p^{x_n}(x_n)$$

9 - 17 Conditional density

S. Lall, Stanford 2011.02.02.01

Adding independent random variables

 $x,y \in \mathbb{R}$ are independent random variables, with induced pdf's p^x and p^y

let z = x + y; the induced pdf of z is the *convolution* of p^x and p^y

$$p^{z}(z) = \int_{-\infty}^{\infty} p^{x}(x)p^{y}(z-x) dx$$

example: convolution of a uniform pdf with itself

if x, y are both uniform on [0, 2], and independent, let z = x + y

the distribution of the sum of two uniform rv's is not uniform.

9 - 18 Conditional density S. Lall, Stanford 2011.02.02.01

Uncorrelated Gaussians

Uncorrelated Gaussians are independent

Suppose $x:\Omega\to\mathbb{R}^n$. If $x\sim\mathcal{N}(\mu,\Sigma)$ and $\Sigma_{12}=0$, then x_1 and x_2 are independent.

To see this, notice that

$$p^{x}(x_{1}, x_{2}) = c_{1} \exp\left(-\frac{1}{2}x^{T} \Sigma^{-1} x\right)$$

$$= c_{1} \exp\left(-\frac{1}{2}x_{1}^{T} \Sigma_{11}^{-1} x_{1}\right) \exp\left(-\frac{1}{2}x_{2}^{T} \Sigma_{22}^{-1} x_{2}\right)$$

$$= p^{x_{1}}(x_{1}) p^{x_{2}}(x_{2})$$

where p^{x_1} and p^{x_2} are Gaussian pdfs.

Example: correlation

Suppose $x \sim \mathcal{N}(0, \Sigma)$ where

$$\Sigma = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

Then

- ullet x and y are correlated
- ullet z and y are correlated
- z and x are uncorrelated
- The eigenvalues of Σ are 0.59, 2, 3.4

9 - 20 Conditional density S. Lall, Stanford 2011.02.02.01

Example: correlation

9 - 21 Conditional density

S. Lall, Stanford 2011.02.02.01

Example: correlation

9 - 22 Conditional density

S. Lall, Stanford 2011.02.02.01

Example: correlation

9 - 23 Conditional density

S. Lall, Stanford 2011.02.02.01

Example: correlation

example: adding Gaussian random vectors

suppose $x \in \mathbb{R}^2$, and $x \sim \mathcal{N}(\mu, \Sigma)$; let

$$z = \begin{bmatrix} 1 & 1 \end{bmatrix} x$$
$$= x_1 + x_2$$

then

and

$$\mathbf{E} z = \mu_1 + \mu_2$$

$$\mathbf{cov}(z) = \begin{bmatrix} 1 & 1 \end{bmatrix} \Sigma \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

if $\Sigma = \begin{bmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{bmatrix}$ is diagonal, so x_1 and x_2 are independent, then

$$\mathbf{cov}(z) = \Sigma_{11} + \Sigma_{22}$$