9 - 1 Conditional density

S. Lall, Stanford 2011.02.02.01

# 9 - Conditional density

- Conditional density
- Conditional pdf as a limit
- Conditional mean and covariance
- Conditional notation
- Conditional pdf for a Gaussian
- Conditional confidence intervals
- Independence
- Adding independent random variables
- Uncorrelated Gaussians
- Adding Gaussian random vectors

## **Conditioning**

- Given a joint pdf p(x,y) on  $\mathbb{R}^2$
- Measure y; we would like to find the conditional pdf of x

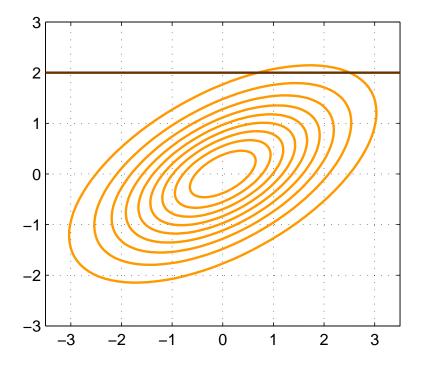
#### **Frequency Interpretation**

- Collect data (x, y)
- Discard those pairs with

$$y \notin [y_{\text{meas}}, y_{\text{meas}} + \varepsilon]$$

for small  $\varepsilon > 0$ 

• Then the density of  $\boldsymbol{x}$  will approximate the conditional pdf



## **Conditioning**

We would like to define the conditional probability

$$\mathbf{Prob}(A \mid B) = \frac{\mathbf{Prob}(A \cap B)}{\mathbf{Prob}(B)}$$

where

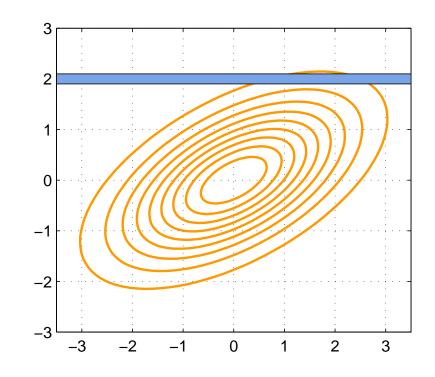
$$A = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| x \in [a_1, a_2] \right\} \qquad B = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| y = y_{\text{meas}} \right\}$$

We cannot do this, since  $\mathbf{Prob}(B) = 0$ .

Instead we look at

$$B_{\varepsilon} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid y \in [y_{\text{meas}}, y_{\text{meas}} + \varepsilon] \right\}$$

and take the limit as  $\varepsilon \to 0$ 



9 - 4 Conditional density

S. Lall, Stanford 2011.02.02.01

#### Conditional pdf as a limit

$$\mathbf{Prob}(A \mid B) = \lim_{\varepsilon \to 0} \ \mathbf{Prob}(A \mid B_{\varepsilon})$$

$$= \lim_{\varepsilon \to 0} \ \frac{\int_{y_{\mathsf{meas}}}^{y_{\mathsf{meas}} + \varepsilon} \int_{a_1}^{a_2} p(x,y) \, dx \, dy}{\int_{y_{\mathsf{meas}}}^{y_{\mathsf{meas}} + \varepsilon} \int_{-\infty}^{\infty} p(x,y) \, dx \, dy}$$

$$= \lim_{\varepsilon \to 0} \ \frac{\varepsilon \int_{a_1}^{a_2} p(x,y_{\rm meas}) \, dx \ + \ {\rm terms \ of \ order} \ \varepsilon^2 \ {\rm or \ higher}}{\varepsilon \int_{-\infty}^{\infty} p(x,y_{\rm meas}) \, dx \ + \ {\rm terms \ of \ order} \ \varepsilon^2 \ {\rm or \ higher}}$$

$$= \int_{a_1}^{a_2} \frac{p(x,y_{\rm meas})}{p^y(y_{\rm meas})} \, dx$$

where  $p^y$  is the marginal pdf of y.

9 - 5 Conditional density S. Lall, Stanford 2011.02.02.01

## **Conditional pdf**

We write this as

$$\mathbf{Prob}(x \in [a_1, a_2] | y = y_{\text{meas}}) = \int_{a_1}^{a_2} \frac{p(x, y_{\text{meas}})}{p^y(y_{\text{meas}})} dx$$

We define the conditional pdf  $p^{|y|}$  of x given  $y = y_{meas}$  by

$$\mathbf{Prob}(x \in [a_1, a_2] | y = y_{\text{meas}}) = \int_{a_1}^{a_2} p^{|y}(x, y_{\text{meas}}) dx$$

Since this holds for all  $a_1, a_2$ , we must have

$$p^{|y}(x,y_{\rm meas}) = \frac{p(x,y_{\rm meas})}{p^y(y_{\rm meas})}$$

Again, we can think of the denominator as simply normalizing the pdf.

#### Conditional mean and covariance

The *conditional mean* of x given y is

$$\mathbf{E}(x \mid y = y_{\text{meas}}) = \int x \, p^{|y}(x, y_{\text{meas}}) \, dx$$

This is a function of  $y_{meas}$ 

The *conditional covariance* of x given y is

$$\mathbf{cov}(x \mid y = w) = \mathbf{E}\Big(\big(x - f(w)\big)\big(x - f(w)\big)^T \mid y = w\Big)$$

Here  $f(w) = \mathbf{E}(x \mid y = w)$ . The conditional covariance is also a function of  $y_{\text{meas}}$ 

#### **Conditional notation**

conditional expectation defines a function; e.g.,

$$f(w) = \mathbf{E}(x \mid y = w)$$

defines a function  $f: \mathbb{R}^m \to \mathbb{R}^n$ 

We often take expectations of the form

$$\mathbf{E}(f(y))$$

For the above f we have  $\mathbf{E}(f(y)) = \mathbf{E} x$ 

• This is often written

$$\mathbf{E}(\mathbf{E}(x \mid y))$$

#### **Conditional notation**

Another common notation

$$h(w) = \mathbf{cov}(x \mid y = w)$$

• Again, you see

$$\mathbf{E} \operatorname{trace} \mathbf{cov}(x \mid y)$$

which means  $\mathbf{E} \operatorname{trace}(h(y))$ 

Suppose  $x \sim \mathcal{N}(0, \Sigma)$ , and

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

Suppose we measure  $x_2 = y$ . We would like to find the conditional pdf of  $x_1$  given  $x_2 = y$ 

- Is it Gaussian?
- What is the *conditional mean*  $\mathbf{E}(x_1 | x_2 = y)$  of  $x_1$  given  $x_2$
- What is the *conditional covariance*  $\mathbf{cov}(x_1 \mid x_2 = y)$  of  $x_1$  given  $x_2$ ?

The pdf of x is

$$p^{x}(x) = c_1 \exp\left(-\frac{1}{2}x^{T}\Sigma^{-1}x\right)$$

By the completion of squares formula

$$\Sigma^{-1} = \begin{bmatrix} I & 0 \\ -\Sigma_{22}^{-1}\Sigma_{21} & I \end{bmatrix} \begin{bmatrix} (\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})^{-1} & 0 \\ 0 & \Sigma_{22}^{-1} \end{bmatrix} \begin{bmatrix} I & -\Sigma_{12}\Sigma_{22}^{-1} \\ 0 & I \end{bmatrix}$$

Hence

$$x^{T} \Sigma^{-1} x = (x_1 - Lx_2)^{T} T^{-1} (x_1 - Lx_2) + x_2^{T} \Sigma_{22}^{-1} x_2$$

where

$$T = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \qquad L = \Sigma_{12} \Sigma_{22}^{-1}$$

9 - 11 Conditional density S. Lall, Stanford 2011.02.02.01

### Conditional pdf for a Gaussian

The conditional pdf of  $x_1$  given  $x_2$  is therefore

$$p^{|x_2}(x_1, y) = \frac{c_1}{p^{x_2}(y)} \exp\left(-\frac{1}{2}(x_1 - Ly)^T T^{-1}(x_1 - Ly) - \frac{1}{2}y^T \Sigma_{22}^{-1}y\right)$$

$$= \frac{c_1}{p^{x_2}(y)} \exp\left(-\frac{1}{2}y^T \Sigma_{22}^{-1} y\right) \exp\left(-\frac{1}{2}(x_1 - Ly)^T T^{-1}(x_1 - Ly)\right)$$

Hence  $p^{|x_2|}(x_1, y)$  is Gaussian

$$p^{|x_2}(x_1, y) = c_2(y) \exp\left(-\frac{1}{2}(x_1 - Ly)^T T^{-1}(x_1 - Ly)\right)$$

where  $c_2(y)$  is such that  $\int p^{|x_2|}(x_1,y) dx_1 = 1$ 

• If  $x \sim \mathcal{N}(0, \Sigma)$ , then the conditional pdf of  $x_1$  given  $x_2 = y$  is Gaussian

The conditional mean is

$$\mathbf{E}(x_1 \,|\, x_2 = y) = \Sigma_{12} \Sigma_{22}^{-1} y$$

It is a *linear function* of y

• The conditional covariance is

$$\mathbf{cov}(x_1 \mid x_2 = y) = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

It is *not* a function of y

Here

$$\mathbf{cov}(x) = \begin{bmatrix} 2 & 0.8 \\ 0.8 & 1 \end{bmatrix} \qquad p^{|x_2|}(x_1, 2)$$

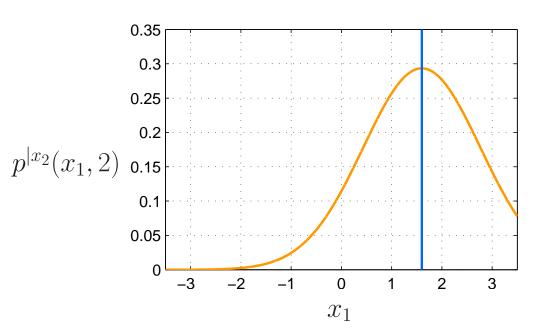
• We have

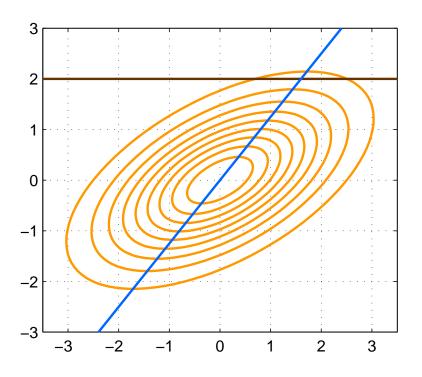
$$L = 0.8$$
  $T = 1.36$ 

Hence

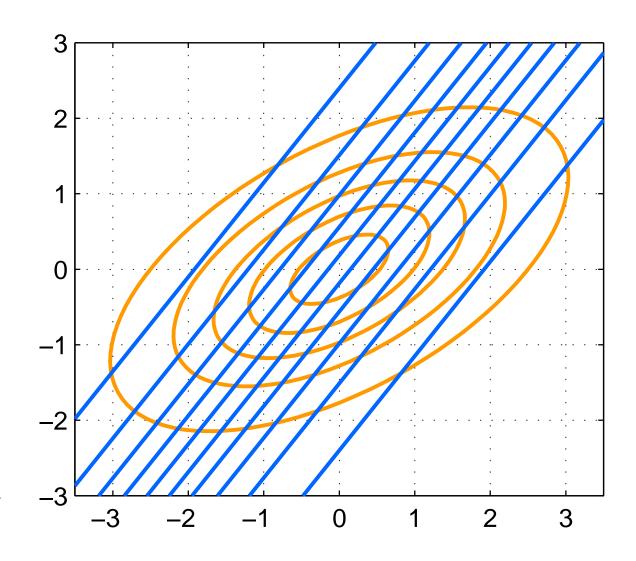
$$\mathbf{E}(x_1 \mid x_2 = 2) = 1.6$$

$$\mathbf{cov}(x_1 \mid x_2 = 2) = 0.8$$



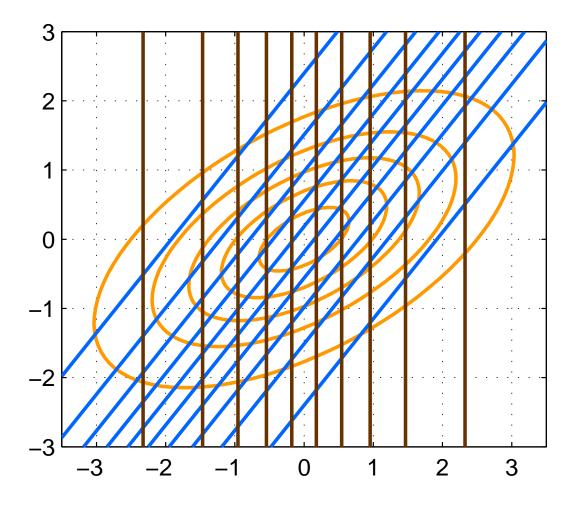


- Here  $\Sigma = \begin{bmatrix} 2 & 0.8 \\ 0.8 & 1 \end{bmatrix}$
- The contours of the *conditional pdf*  $p^{|x_2|}(x_1, x_2)$  as a function of  $x_1$  and  $x_2$  are shown in blue.
- Both confidence ellipsoids and conditional contours correspond to confidence levels of 0.1, 0.3, 0.5, 0.7, 0.9
- The conditional pdf is constant on lines  $x_1 = \sum_{12} \sum_{22}^{-1} x_2 + a$



#### **Conditional confidence intervals**

Compare with the marginal pdf confidence intervals



Notice that conditional confidence intervals are narrower, since  $T = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$  hence  $T \leq \Sigma_{11}$ , i.e., measuring  $x_2$  gives *information* about  $x_1$ 

9 - 16 Conditional density S. Lall, Stanford 2011.02.02.01

# Independence

suppose  $x:\Omega\to s\mathbb{R}^n$  is a random variable with induced pdf  $p^x:\mathbb{R}^n\to\mathbb{R}$ 

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

each component  $x_i$  is a random variable, with marginal pdf  $p^{x_i}: \mathbb{R} \to \mathbb{R}$  given by integrating over all other components, e.g. in  $\mathbb{R}^3$ ,

$$p^{x_3}(x_3) = \int_{x_2 = -\infty}^{\infty} \int_{x_1 = -\infty}^{\infty} p^x(x) \, dx_1 dx_2$$

random variables  $x_1, \ldots, x_n \in \mathbb{R}$  are called *independent* if

$$p^{x}(x) = p^{x_1}(x_1)p^{x_2}(x_2)\dots p^{x_n}(x_n)$$

9 - 17 Conditional density

S. Lall, Stanford 2011.02.02.01

#### Adding independent random variables

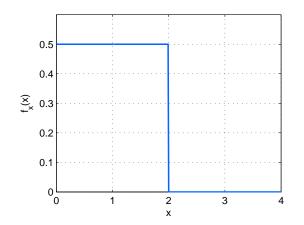
 $x,y \in \mathbb{R}$  are independent random variables, with induced pdf's  $p^x$  and  $p^y$ 

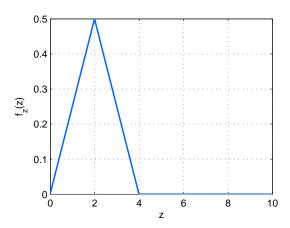
let z = x + y; the induced pdf of z is the *convolution* of  $p^x$  and  $p^y$ 

$$p^{z}(z) = \int_{-\infty}^{\infty} p^{x}(x)p^{y}(z-x) dx$$

### example: convolution of a uniform pdf with itself

if x, y are both uniform on [0, 2], and independent, let z = x + y





the distribution of the sum of two uniform rv's is not uniform.

9 - 18 Conditional density S. Lall, Stanford 2011.02.02.01

#### **Uncorrelated Gaussians**

Uncorrelated Gaussians are independent

Suppose  $x:\Omega\to\mathbb{R}^n$ . If  $x\sim\mathcal{N}(\mu,\Sigma)$  and  $\Sigma_{12}=0$ , then  $x_1$  and  $x_2$  are independent.

To see this, notice that

$$p^{x}(x_{1}, x_{2}) = c_{1} \exp\left(-\frac{1}{2}x^{T} \Sigma^{-1} x\right)$$

$$= c_{1} \exp\left(-\frac{1}{2}x_{1}^{T} \Sigma_{11}^{-1} x_{1}\right) \exp\left(-\frac{1}{2}x_{2}^{T} \Sigma_{22}^{-1} x_{2}\right)$$

$$= p^{x_{1}}(x_{1}) p^{x_{2}}(x_{2})$$

where  $p^{x_1}$  and  $p^{x_2}$  are Gaussian pdfs.

### **Example: correlation**

Suppose  $x \sim \mathcal{N}(0, \Sigma)$  where

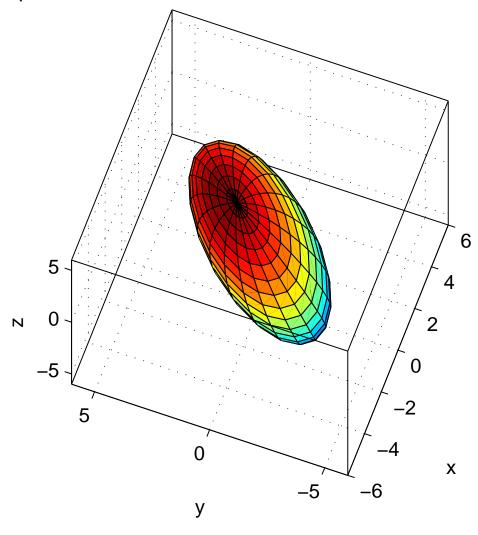
$$\Sigma = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

#### Then

- ullet x and y are correlated
- ullet z and y are correlated
- z and x are uncorrelated
- The eigenvalues of  $\Sigma$  are 0.59, 2, 3.4

9 - 20 Conditional density S. Lall, Stanford 2011.02.02.01

# **Example: correlation**



9 - 21 Conditional density

S. Lall, Stanford 2011.02.02.01

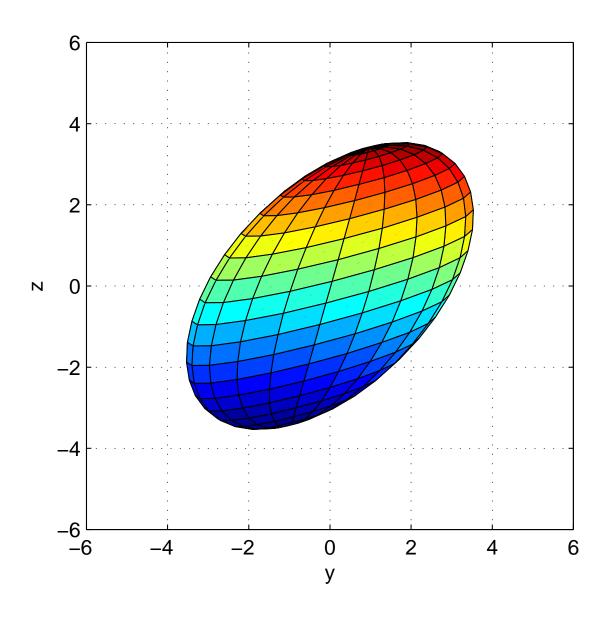
# **Example: correlation**



9 - 22 Conditional density

S. Lall, Stanford 2011.02.02.01

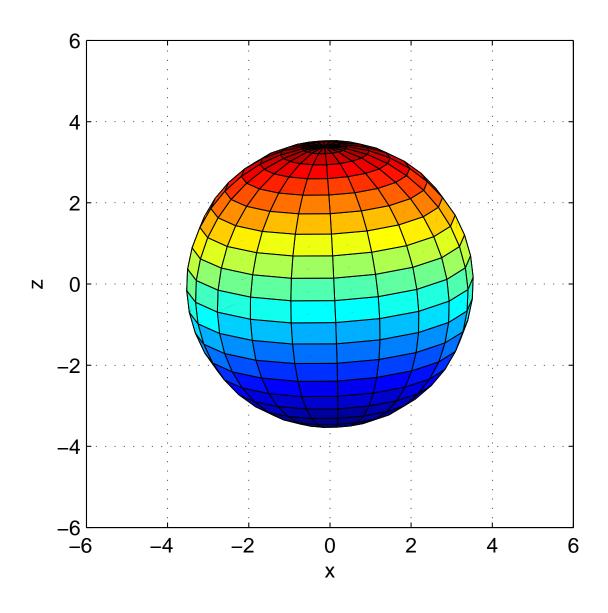
# **Example: correlation**



9 - 23 Conditional density

S. Lall, Stanford 2011.02.02.01

# **Example: correlation**



### example: adding Gaussian random vectors

suppose  $x \in \mathbb{R}^2$ , and  $x \sim \mathcal{N}(\mu, \Sigma)$ ; let

$$z = \begin{bmatrix} 1 & 1 \end{bmatrix} x$$
$$= x_1 + x_2$$

then

and

$$\mathbf{E} z = \mu_1 + \mu_2$$

$$\mathbf{cov}(z) = \begin{bmatrix} 1 & 1 \end{bmatrix} \Sigma \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

if  $\Sigma = \begin{bmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{bmatrix}$  is diagonal, so  $x_1$  and  $x_2$  are independent, then

$$\mathbf{cov}(z) = \Sigma_{11} + \Sigma_{22}$$