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Transition Matrices

Suppose
Yy ::,f(lh?U)

We interpret
e 7 is measured
e I is a quantity we would like to estimate

® W IS noise

S. Lall, Stanford 2011.02.15.01

Random variables z : 2 — X, vy : Q) = Y and w : ) — W, where XY, W are finite

sets.

We can represent the random map from x to y by the transition matrix G given by

G(q,z) = Prob(y =q|x

2)
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Example: noisy measurement

Suppose x : 2 — {1,2,...,n}. We measure

y=x+uw /

Th i - () 0.1} h f 40 Ll
e noise w — {0, 1} has pm @‘ et
3 1
Prob(w =0) = 1 Prob(w =1) = 1 BT
E D= 55
The transition matrix is - 3
4 4
31
c_ | 11
31
i 1 4

where we use the convention that G;; = G(j, 1)
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Equivalent representations

We can also go the other way, from transition matrix to function. Suppose x : {2 — {1,2}
and y : Q2 — {1,4} with transition matrix

o [1/3 1/6 1/2 0 ] ngly//”?f/;i S0

$ =7
0 0 3/41/4 ¥ T
\ ¥
\\\\) ",a__-‘
We construct a function f and a random variable w so that /”“,/’
_ _ " == M
y= f(z,w). Let w = [wJ where (4:4)

Prob(w; =1) =1/3
Prob(w; =2) =1/6
Prob(w; = 3) =1/2

Prob(w, = 3) =3/4
Prob(w, =4) =1/2

Let f be

For any matrix G we can construct such a function f; it doesn't depend on the prior on x
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Transition Matrices

Suppose y = f(z,w) and w has pmf p*. Suppose

x and w are independent

Then we can find the transition matrix without knowing the prior of x. We have

G(q,z) = Prob(y = q|z = z)
~ Prob(f(z,w)=qand x = 2)
Prob(z = 2)
~ Prob(f(z,w) =¢qand z = 2)
Prob(x = 2)
~ Prob(f(z,w) = q) Prob(z = z)
Prob(z = z2)

since w and x are independent

G(q,2) = Prob(f(z,w) = q)
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Continuous random variables

Suppose z : {2 — R" and y{2 — R". The transition matrix is replaced by the conditional
pdf G defined by

/ G(q,2)dq = Prob(y € A|x = 2)
A
for all A C R™.

(7 is also called a stochastic kernel
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Linear plus Gaussian

Suppose
y=Ar+w  w~N(0,X)

Then the stochastic kernel is

Glg, 2) = folg — Az)

where fy, is the Gaussian pdf for N'(0, Y).
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Recursive estimation

Often we have several measurements 41, vs, . . ., Ym, and a joint pdf f(x, y1, 92, ..., Ym)
® we receive measurements one at a time
e after measuring v;, we construct an estimate z;

e when we receive y;,1, we would like to update z;

For example, we often have

Y1 Ay wq
A
?{2 _ :2 T+ U:J2
Yk | | Ap | Wy

For example, in GPS,

e 1, represents range measurements to satellite ¢
e When we receive new data, we'd like to update position estimates

e We do not want to have to store old data yo, y1,..., 91



12 - 9 Recursive estimation S. Lall, Stanford 2011.02.15.01

Representation as functiona

More generally

_yf _f1<557 ’w1>_
Y21 _ folx, ws)
k| [ el wi) |
or more succinctly
y = [f(z,w)

where w = (wy, wo, ..., wy), etc.



12 - 10 Recursive estimation

Transition matrix representation

G(q1, 92, - - qr, 2) = Prob(y; = qu, . ..

or

G(q,z) = Prob(y = q|x

S. Lall, Stanford 2011.02.15.01

= 2)
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Recursive estimation

We have the following scenario

Y1 = fl (QZ‘, wl)
Y2 = folx, wo)
Yr = [z, wy)
where x, wy, wo, ..., wy are independent. Then GG factorizes:

G(q,2) = Gilqi, 2)Galq2, 2) - .. Gilqr, 2)

Because

G(q,z) = Prob(f(z,w) = q)
= Prob(fi(z,w1) = aq, ..., fulz, wr) = qi)
= Prob(fl(z, wl) = Q1) o PPOb(fk(Z, wk) — C]k)
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Factorization of the pmf

We have

G(q,2) = Gilqr, 2)Galq2, 2) - .. Gilqr, 2)

This means

Prob(y =q|x =2) =Prob(y1 =q1 |z =2)...Prob(yy = ¢ | x = 2)

e The random variables vy, 1o, ..., y; are called conditionally independent

e This is the key property that allows recursive estimation
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Conditional independence

y1|x =z and yo | x = z are independent for all z

for example, suppose

) = ) )

y1
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Conditional independence

This does not imply that 4, and 7, are independent. We have

= 1
Yo Ay 01 W

covl 1Y) = A1QA +X A1QA; 131
yo| ) | AQA] AQA) + 5| |12

hence
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Bayesian estimation review

e Start with

e prior pyo(z) = Prob(x = 2)
e transition probabilities G(q, 2) = Prob(y = q |z = z).

e The joint pdf is then

Prob(y = ¢,z = z) = G(q, 2)po(2)

e Measure 4§ = Ymeas, and construct posterior p1(2, Ymeas) = Prob(x = 2 | ¥ = Ymeas)

G<yme357 Z>p0(z)

Z G<ymeas; a)p()(a)

P1 (Z, ymeas) —

e We can then construct an estimate in the usual way; e.g. to minimize a cost function.
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Recursive estimation

Let p; be the posterior pmf after measuring y1 = q1, ...,y = q;. By definition

Gi(q, 2) ... Gi(qs, 2)pe(2)
Z Gi(q,a)...Gi(q, a)pi(a)

pt(*za qi, - - - 7Qt> —

e We would like to use the posterior pdf p; after measuring v, ..., y; as the prior pdf
when we receive measurement ;1.

e |t turns out that this is possible when y; and y, are conditionally independent.

e And we can forget
the previous measurements
where they came from; i.e. the sensors G5y, ..., Gy

So we can do sensor fusion



12 - 17 Recursive estimation S. Lall, Stanford 2011.02.15.01

Recursive estimation

The main result: if y, ..., y; are conditionally independent, then

Gt+1<Qt+17 Z)]?t(Z)

S Grrlars alpila)

Pr+1(2)

e We omit the dependence of p; on ¢, ..., q.
o If X ={1,2,...,n} then we implement this by storing p; as a vector in R".
e p; is called the belief state. It is the only quantity we need to store.

e The history of observations ¢y, ..., q is called the information state
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Proof
Since p;1 is the posterior given y1, ..., v, it is by definition

_ po(Z)G1(C]1, Z) ce Gt(% Z>Gt+1((]t+la Z)
Zapo(a)&(ql, Cl) e Gt(% CL)GtJrl(QtJrla a)

Pr+1(2)

Now substitute into this expression the definition of p; to give

- pz) (prO(Z)Gl(Qh b)...Gilqr, b)) Gii1(qs1, 2)
a Za po(a)G1<C]1, CL) . Gt(% @)Gt+1<%+1, CL)

) (Zym)Gilarb). - Gilg b)) Grsalaren, =)
>, p(@) (S po(e)Grlar, ©) - Gilar, ) ) Grealausn, @

_ Pi(2)G1(Q41, 2)
> aPe(@)Giia(gisa, a)

as desired.
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Continuous case

It's almost the same:

G Y
Proi(z) = pi(2)Gry1(qit1, 2)
/ pi(a)Gi1(git1, a) da

cRn

The proof is the same as in the discrete case.
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Recursive estimation with linear measurements and Gaussian noise

Suppose we have
y=Ax+w

where = and w are independent, and x ~ N (Z, Q) and w ~ N (0, Y).

This is equivalent to
e 1z has prior x ~ N (Zy, Qo)

e y|(x = 2) has pdf N(Az,X)
because the joint pdf is p(x,y) = p*(x)p"“(y — Ax)

Then x,y are jointly Gaussian, with

x| | | [ Q Q AT
sl -] e - L5 e
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Recursive estimation with Gaussian noise

Let's consider the problem

U1
Y2

Ym

where

e 1z has prior pdf NV (Zg, Qo)
e w; has pdf NV (0,3

e w; and w; are independent if ¢ # j

T +

S. Lall, Stanford 2011.02.15.01
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Recursive estimation with Gaussian noise

The conditional covariance of y given z = z is

21

cov(y|z=2)= 22

and hence y; and y; are conditionally independent.

S. Lall, Stanford 2011.02.15.01
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Gaussians are special

We could just apply the formula
Proi(z) = pi(2)Gria(qri1, 2)
[ p@Gratacn,a) do

cRn

because we know Gy(qt, 2) = fx,(q — As2).

But we don'’t need to. Because
e we know py is Gaussian.

e Hence the posterior p; will be Gaussian, and we know it's mean and covariance, so
we know it completely

e Hence the posterior py will be Gaussian, ...

e Theidea: we don't need to store p;. Since it's Gaussian, it is characterized completely
by its mean and covariance.
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Recursive estimation with Gaussian noise

We know how to do Bayesian estimation for Gaussians; that is, if
e 1z has prior z ~ N (Zy, Qo)
o yi|(z = 2) has pdf N'(Az, %)

Then the posterior pdf hi (2, Yimeas) Of T | (Y1 = Yimeas) is N (21, Q1) where

i'l — jjO =+ QOA{<A1QOA1T + Z1>_1<ymeas - Alfij())

Q1= Qo — QoA (A1QuA] + 1) 'A1Qq
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Recursive estimation with Gaussian noise

Now since y; and y; are conditionally independent for ¢ # j, we can use the posterior pdf
of Z | (41 = Y1imeas as the prior pdf for the next measurement.

So, after measuring vy, we have new prior

XL ‘ (yl — ylmeas> ~ N(fly Ql)

Also the conditional pdf for 15 | (z = 2) is N (Asz, )

And so we can apply exactly the same estimator as before.
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Summary: recursive estimation with Gaussians noise
Set k = 0; repeat

1. update the covariance

Qi1 = Qr — QpA} (A1 QrA; 1 + Ski1) Ap1Qx

2. update the estimate

Trp1 = &g + QrAp 1 (Ar1QuAf g + Sir1) (Yot — Apr )

3. k— k+1
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Alternative formulae

Set k = 0; repeat

1. update the covariance

1 1
Qi = Qr ' + AL S 1 Ak

2. update the estimate

3.

k— k—+1

Tpy1 = Tp + Qk+1Ak+1 k+1 (yk+1

Apiay)

S. Lall, Stanford 2011.02.15.01
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Information interpretation

with each new measurement, we have
1 -l T -1
Q1 = @p + A2 1Ak

inverse of covariance matrix (); is called the information matrix

information matrices add when combining data

we have Qk_il > Q,;l, i.e., with each measurement, our information increases

mean-square-error

this is equivalent to (1.1 < (J; , and so the mean-square error satisfies

E|z — &1 = trace Q;11

n
T
— E e; Qrt16€i
1=1

< trace ()},

= Ellz — &*

i.e. the mean-square error is non-increasing
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Example: navigation

after meas. with 2(4,4)=0.1

after meas. with 2(1,1)=1, 2(2,2)=1, 3(3,3)=0.01

5 : 5

4t 4t

3f 3l

2f ol

1 1t

0 : : : : 0 ; ; ; ;

3 4 5 6 ! 8 3 4 5 6 7 8

after meas. with 2(5,5)=0.01 after meas. with (6,6)=0.01

5 - - - - 5 - - - -

4 b 4

2 27
1 1
0 0
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Example: recursive estimation of a scalar

suppose
Vi = T + w; fore=1,...,k

and w; ~ N(0,1), and w;, w; are independent when i # j

Now assume prior z ~ N(0,1). We know

Y1 1 w1
1
Pl= e+ ]|

and so, for any p

7 = pHZyz

This tends to the sample mean of the measurements; as expected it is biased by the prior.
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Example: recursive estimation of a scalar

We have
Qrir = Q' +1
1
E+1
Then the recursive estimator is

and therefore ), =

Tri1 = Tp + Qrr1(Ypr1 — Tk)

k-+1 N 1
— T
L+ F T k4o

Yk+1

so given y;.1 and we can update z; find 2;.1; don't need to remember vy, ...,y

e Notice that the error covariance (), — 0
e As time k£ becomes large, the data has no effect.

e However, if x is changing, we need the estimator to respond to this; as we will see,
the Kalman filter is a remedy for this problem.



